The iterated minimum modulus and Eremenko's conjecture

Dan Nicks

University of Nottingham

September 2019

Joint work with Phil Rippon and Gwyneth Stallard

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

We study the iteration of a transcendental entire function (tef) $f \colon \mathbb{C} \to \mathbb{C}$

Definition

The escaping set $I(f) := \{z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to \infty\}.$

Eremenko (1989) showed that

- $I(f) \cap J(f) \neq \emptyset$, where J(f) is the Julia set;
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

Eremenko's conjecture

All components of I(f) are unbounded.

It is now known that I(f) always has at least one unbounded component.

Eremenko's conjecture is open in general, but known for a wide range of examples:

- for many tefs, including the exponential family, *I*(*f*) is a "Cantor bouquet" of uncountably many unbounded curves;
- for many other families *I*(*f*) has the structure of a "spider's web".

Definition

A set $I \subset \mathbb{C}$ is a *spider's web* if

- I is connected; and
- there exist bounded, simply connected domains G_n such that

$$G_n \subset G_{n+1}, \quad \partial G_n \subset I, \quad \text{and} \quad \bigcup_{n \in \mathbb{N}} = \mathbb{C}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

Note: I(f) a spider's web $\implies I(f)$ connected \implies Eremenko's conjecture holds for f. For example, I(f) is a spider's web if any of the following hold:

- f has a multiply-connected Fatou component;
- f grows not too fast and has "regular growth";
- *f* grows extremely slowly; namely $\exists k \ge 2$ such that $\log \log M(r) < \frac{\log r}{\log^k r}$ for large *r*.

We denote the maximum modulus and minimum modulus of f by

$$M(r) = \max_{|z|=r} |f(z)|$$
 and $m(r) = \min_{|z|=r} |f(z)|$.

Much of the above relies on finding r > R such that $m^n(r) > M^n(R) \to \infty$, which implies that I(f) is a spider's web.

...but there exist functions of order 0 for which there are no such r, R.

Using a new approach, we show l(f) is a spider's web under a condition based on $m^n(r)$ only, without any regularity assumptions.

We focus on the class of real tefs of finite order with only real zeroes.

• *f* is called *real* if $f(x) \in \mathbb{R}$ when $x \in \mathbb{R}$ (equivalently $f(\overline{z}) = \overline{f(z)}$),

• the order of f is
$$\rho(f) := \limsup_{r \to \infty} \frac{\log \log M(r)}{\log r}$$

Theorem 1 (N., Rippon, Stallard)

Let f be a real tef of finite order with only real zeros. If

 $\exists r > 0$ such that $m^n(r) \to \infty$ as $n \to \infty$,

then I(f) is a spider's web (so I(f) is connected).

- All tef with order $<\frac{1}{2}$ satisfy (*).
- $\cos \sqrt{z}$ has order $=\frac{1}{2}$, real zeroes, and does not satisfy (*).
- $2z \cos \sqrt{z}$ has order $= \frac{1}{2}$, real zeroes, and does satisfy (*).
- When order > 2 we prove Theorem 1 by showing that (*) is never satisfied...

(*)

Theorem 2 (N., Rippon, Stallard)

Let *f* be a tef with $2 < \rho(f) < \infty$ and only real zeroes. Then

- (a) there exists θ such that $f(re^{i\theta}) \rightarrow 0$ as $r \rightarrow \infty$; and
- (b) 0 is a deficient value of f.

Note that both (a) and (b) imply $m(r) \rightarrow 0$ as $r \rightarrow \infty$, so (*) does not hold for such *f*.

Proof.

- (a) Uses an analysis of the Hadamard factorisation of *f*.
- (b) Follows from a result of Edrei, Fuchs and Hellerstein (1961).

Conjecture: (*) fails for all tef of infinite order with only real zeroes.

Sketch of proof of Theorem 1

Let *f* be real tef, $\rho(f) < \infty$, with only real zeroes. Assume $m^n(r) \to \infty$ for some *r*. Note $\rho(f) \le 2$ by Theorem 2.

Suppose I(f) is not a spider's web.

- C \ *I*(*f*) has an unbounded component, so take a long curve γ₀ with γ₀ ∩ *I*(*f*) = Ø.
- Find sequence $\gamma_{n+1} \subset f(\gamma_n)$ such that either:
- the γ_n experience repeated radial stretching, escaping to ∞ (so γ₀ meets *l*(*f*) — contradiction);

OR

(II) eventually some γ_n winds round 0. But then γ_n meets an unbounded component of I(f), again a contradiction.

Recall (*): $\exists r > 0$ such that $m^n(r) \to \infty$.

We've seen that if *f* is a real tef of finite order with only real zeroes, then (*) always holds if $\rho(f) < \frac{1}{2}$ and never holds if $\rho(f) > 2$.

Theorem 3 (N., Rippon, Stallard)

For any $\frac{1}{2} \le \rho \le 2$, there exist examples of real tefs with only real zeroes and order ρ such that (*) does, and does not, hold.

Examples constructed as infinite products:

 Using very evenly distributed zeroes one can make m(r) bounded, so (⋆) fails. E.g. for ¹/₂ < ρ < 1

$$f(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{n^{1/\rho}} \right).$$
 (Hardy, 1905)

• Using very unevenly distributed zeroes (big gaps and high multiplicities) can make examples where (*) holds.