The iterated minimum modulus and Eremenko's conjecture

Dan Nicks

University of Nottingham
September 2019

Joint work with Phil Rippon and Gwyneth Stallard

We study the iteration of a transcendental entire function (tef) $f: \mathbb{C} \rightarrow \mathbb{C}$

Definition

The escaping set $I(f):=\left\{z \in \mathbb{C}: f^{n}(z) \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right\}$.
Eremenko (1989) showed that

- $I(f) \cap J(f) \neq \emptyset$, where $J(f)$ is the Julia set;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjecture

All components of $I(f)$ are unbounded.

It is now known that $I(f)$ always has at least one unbounded component.

Eremenko's conjecture is open in general, but known for a wide range of examples:

- for many tefs, including the exponential family, $l(f)$ is a "Cantor bouquet" of uncountably many unbounded curves;
- for many other families $I(f)$ has the structure of a "spider's web".

Definition

A set $I \subset \mathbb{C}$ is a spider's web if

- / is connected; and
- there exist bounded, simply connected domains G_{n} such that

$$
G_{n} \subset G_{n+1}, \quad \partial G_{n} \subset I, \quad \text { and } \quad \bigcup_{n \in \mathbb{N}}=\mathbb{C}
$$

Note: $I(f)$ a spider's web $\Longrightarrow I(f)$ connected
\Longrightarrow Eremenko's conjecture holds for f.

For example, $I(f)$ is a spider's web if any of the following hold:

- f has a multiply-connected Fatou component;
- f grows not too fast and has "regular growth";
- f grows extremely slowly; namely $\exists k \geq 2$ such that $\log \log M(r)<\frac{\log r}{\log ^{k} r}$ for large r.

We denote the maximum modulus and minimum modulus of f by

$$
M(r)=\max _{|z|=r}|f(z)| \quad \text { and } \quad m(r)=\min _{|z|=r}|f(z)| .
$$

Much of the above relies on finding $r>R$ such that $m^{n}(r)>M^{n}(R) \rightarrow \infty$, which implies that $I(f)$ is a spider's web.
...but there exist functions of order 0 for which there are no such r, R.
Using a new approach, we show $I(f)$ is a spider's web under a condition based on $m^{n}(r)$ only, without any regularity assumptions.

We focus on the class of real tefs of finite order with only real zeroes.

- f is called real if $f(x) \in \mathbb{R}$ when $x \in \mathbb{R}$ (equivalently $f(\bar{z})=\overline{f(z)}$),
- the order of f is $\rho(f):=\limsup _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}$.

Theorem 1 (N., Rippon, Stallard)

Let f be a real tef of finite order with only real zeros. If

$$
\exists r>0 \text { such that } m^{n}(r) \rightarrow \infty \text { as } n \rightarrow \infty
$$

then $I(f)$ is a spider's web (so $I(f)$ is connected).

- All tef with order $<\frac{1}{2}$ satisfy (\star).
- $\cos \sqrt{z}$ has order $=\frac{1}{2}$, real zeroes, and does not satisfy (\star).
- $2 z \cos \sqrt{z}$ has order $=\frac{1}{2}$, real zeroes, and does satisfy (\star).
- When order >2 we prove Theorem 1 by showing that (\star) is never satisfied...
(b) 0 is a deficient value of f.

Note that both (a) and (b) imply $m(r) \rightarrow 0$ as $r \rightarrow \infty$, so (\star) does not hold for such f.

Proof.
(a) Uses an analysis of the Hadamard factorisation of f.
(b) Follows from a result of Edrei, Fuchs and Hellerstein (1961).

Conjecture: (\star) fails for all tef of infinite order with only real zeroes.

Sketch of proof of Theorem 1

Let f be real tef, $\rho(f)<\infty$, with only real zeroes. Assume $m^{n}(r) \rightarrow \infty$ for some r. Note $\rho(f) \leq 2$ by Theorem 2.

Suppose $I(f)$ is not a spider's web.

- $\mathbb{C} \backslash I(f)$ has an unbounded component, so take a long curve γ_{0} with $\gamma_{0} \cap I(f)=\emptyset$.
- Find sequence $\gamma_{n+1} \subset f\left(\gamma_{n}\right)$ such that either:
(I) the γ_{n} experience repeated radial stretching, escaping to ∞ (so γ_{0} meets $I(f)$ - contradiction);

OR
(II) eventually some γ_{n} winds round 0 . But then γ_{n} meets an unbounded component of $I(f)$, again a contradiction.

Recall (\star) : $\exists r>0$ such that $m^{n}(r) \rightarrow \infty$.
We've seen that if f is a real tef of finite order with only real zeroes, then (\star) always holds if $\rho(f)<\frac{1}{2}$ and never holds if $\rho(f)>2$.

Theorem 3 (N., Rippon, Stallard)

For any $\frac{1}{2} \leq \rho \leq 2$, there exist examples of real tefs with only real zeroes and order ρ such that (\star) does, and does not, hold.

Examples constructed as infinite products:

- Using very evenly distributed zeroes one can make $m(r)$ bounded, so (\star) fails. E.g. for $\frac{1}{2}<\rho<1$

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n^{1 / \rho}}\right) \cdot \quad(\text { Hardy, 1905 })
$$

- Using very unevenly distributed zeroes (big gaps and high multiplicities) can make examples where (\star) holds.

